def read_and_decode(self, filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
'image_raw': tf.FixedLenFeature([], tf.string),
})
image = tf.decode_raw(features['image_raw'], tf.uint8)
image.set_shape([FLAGS.output_size*FLAGS.output_size*3])
image = tf.reshape(image, [FLAGS.output_size,FLAGS.output_size,3])
image = tf.cast(image, tf.float32) * (1. / 127.5) - 1.0
return image
评论列表
文章目录