def read_tfrecord(filename_queuetemp):
filename_queue = tf.train.string_input_producer([filename_queuetemp])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
'image_raw': tf.FixedLenFeature([], tf.string),
'width': tf.FixedLenFeature([], tf.int64),
'depth': tf.FixedLenFeature([], tf.int64),
'label': tf.FixedLenFeature([], tf.int64)
}
)
image = tf.decode_raw(features['image_raw'], tf.uint8)
# image
depth = features['depth']
tf.reshape(image, [299, 299, 3])
# normalize
image = tf.cast(image, tf.float32) * (1. /255) - 0.5
# label
label = tf.cast(features['label'], tf.int32)
return image, label
评论列表
文章目录