def read_and_decode(filename, img_size=128, depth=1):
if not filename.endswith('.tfrecords'):
print "Invalid file \"{:s}\"".format(filename)
return [], []
else:
data_queue = tf.train.string_input_producer([filename])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(data_queue)
features = tf.parse_single_example(serialized_example,
features={
'label' : tf.FixedLenFeature([], tf.int64),
'img_raw' : tf.FixedLenFeature([], tf.string),
})
img = tf.decode_raw(features['img_raw'], tf.uint8)
img = tf.reshape(img, [img_size, img_size, depth])
# Normalize the image
img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
label = tf.cast(features['label'], tf.int32)
label_onehot = tf.stack(tf.one_hot(label, n_classes))
return img, label_onehot
demo.py 文件源码
python
阅读 36
收藏 0
点赞 0
评论 0
评论列表
文章目录