def single_read(self):
features = tf.parse_single_example(self.serialized_example, features=self._Feature_dict)
image = tf.image.decode_image(features[self._Image_handle])
image.set_shape(self.image_shape)
image = tf.image.convert_image_dtype(image, tf.float32)
image = image - self.mean_image
#Alright we've got images, now to get seqs and masks
complete_seq = features[self._Seq_handle]
complete_mask = features[self._Seq_mask]
'''
decoded_seq = self.get_seq(complete_seq)
decoded_mask = self.get_seq(complete_mask)
sequence_lenght = len(complete_seq)
input_seq = decoded_seq[0:sequence_lenght-1]
target_seq = decoded_seq[1:sequence_lenght]
final_mask = decoded_mask[0:sequence_lenght-1]
'''
return image, complete_seq, complete_mask
Dataset_reader_ImageSeqGen.py 文件源码
python
阅读 33
收藏 0
点赞 0
评论 0
评论列表
文章目录