optimizers.py 文件源码

python
阅读 39 收藏 0 点赞 0 评论 0

项目:ndm 作者: jurcicek 项目源码 文件源码
def _apply_dense(self, grad, var):
        lr = (self._lr_t *
              math_ops.sqrt(1 - self._beta2_power)
              / (1 - self._beta1_power))
        # m_t = beta1 * m + (1 - beta1) * g_t
        m = self.get_slot(var, "m")
        m_scaled_g_values = grad * (1 - self._beta1_t)
        m_t = m * self._beta1_t
        m_t = m_t + m_scaled_g_values
        # v_t = beta2 * v + (1 - beta2) * (g_t * g_t)
        v = self.get_slot(var, "v")
        v_scaled_g_values = tf.pow(grad, 2) * (1 - self._beta2_t)
        v_t = v * self._beta2_t
        v_t = v_t + v_scaled_g_values
        v_sqrt = tf.pow(v_t, self._pow_t)
        var_update = state_ops.assign_sub(var,
                                          lr * m_t / (v_sqrt + self._epsilon_t),
                                          use_locking=self._use_locking)
        # regularization
        var_update = state_ops.assign_sub(var_update,
                                          self._dense_regularization * var,
                                          use_locking=self._use_locking)

        return control_flow_ops.group(*[var_update, m_t, v_t])
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号