def __init__(self, inputs, output_dtype_shape_and_is_asset, spec, name):
for tensor in inputs:
if not isinstance(tensor, tf.Tensor):
raise ValueError('Analyzers can only accept `Tensor`s as inputs')
self._inputs = inputs
self._outputs = []
self._output_is_asset_map = {}
with tf.name_scope(name) as scope:
self._name = scope
for dtype, shape, is_asset in output_dtype_shape_and_is_asset:
output_tensor = tf.placeholder(dtype, shape)
if is_asset and output_tensor.dtype != tf.string:
raise ValueError(('Tensor {} cannot represent an asset, because it '
'is not a string.').format(output_tensor.name))
self._outputs.append(output_tensor)
self._output_is_asset_map[output_tensor] = is_asset
self._spec = spec
tf.add_to_collection(ANALYZER_COLLECTION, self)
评论列表
文章目录