def __init__(self, name, generator, output_types, output_shapes=None, min_queue_examples=0,
shuffle_size=None, padded_shapes=None, padded_values=None):
"""
:param name: name of the dataset.
:param generator generator: generator of elements in of the dataset
:param output_types: list of output types of the generator
:param output_shapes: output shapes of the generator
:param int min_queue_examples: minimum number of examples to queue, this value should be
proportional to the ram of the computer. By default is 0
:param int shuffle_size: size of the buffer for shuffling, this value should be
proportional to the ram of the computer
:param List[tf.Tensor] padded_shapes: shape for padding the batch
:param tf.Tensor padded_values: values for the padding
"""
if not callable(generator):
raise TypeError("`generator` must be callable.")
self.name = name
self.generator = generator
self.output_types = output_types
self.output_shapes = output_shapes
self.min_queue_examples = min_queue_examples
self.shuffle_size = shuffle_size
self.padded_shapes = padded_shapes
self.padded_values = padded_values
tf_dataset_generator.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录