def __init__(self, n_input, n_hidden, transfer_function=tf.nn.softplus, optimizer=tf.train.AdamOptimizer(),
scale=0.1):
self.n_input = n_input # ??????
self.n_hidden = n_hidden # ??????????????
self.transfer = transfer_function # ????
self.scale = tf.placeholder(tf.float32) # ?????????????feed???training_scale
self.training_scale = scale # ??????
network_weights = self._initialize_weights() # ???????????w1/b1????w2/b2
self.weights = network_weights # ??
# model
self.x = tf.placeholder(tf.float32, [None, self.n_input]) # ??feed???
self.hidden = self.transfer(tf.add(tf.matmul(self.x + scale * tf.random_normal((n_input,)),
self.weights['w1']),
self.weights['b1']))
self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2'])
# cost?0.5*(x - x_)^2???
self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0))
self.optimizer = optimizer.minimize(self.cost)
init = tf.global_variables_initializer()
self.sess = tf.Session()
self.sess.run(init) # ???
DenoisingAutoencoder.py 文件源码
python
阅读 30
收藏 0
点赞 0
评论 0
评论列表
文章目录