def test_keep_prob(self):
"""Counts dropped items and compare with the expectation"""
var = tf.ones([10000])
s = tf.Session()
for kprob in [0.1, 0.7]:
dropped_var = dropout(var, kprob, tf.constant(True))
dropped_size = tf.reduce_sum(
tf.to_int32(tf.equal(dropped_var, 0.0)))
dsize = s.run(dropped_size)
expected_dropped_size = 10000 * (1 - kprob)
self.assertTrue(np.isclose(expected_dropped_size, dsize, atol=500))
评论列表
文章目录