def run_train():
fout = open('inf.txt','w+')
test_config = ModelConfig()
test_config.keep_prob = 1.0
test_config.batch_size = 1
Session_config = tf.ConfigProto(allow_soft_placement = True)
Session_config.gpu_options.allow_growth=True
with tf.Graph().as_default(), tf.Session(config=Session_config) as sess:
with tf.device('/gpu:0'):
#if True:
initializer = tf.random_uniform_initializer(-test_config.init_scale,
test_config.init_scale)
train_model = vgg16.Vgg16(FLAGS.vgg16_file_path)
train_model.build(initializer)
data_test = dataset.DataSet(FLAGS.file_path_test,FLAGS.data_root_dir,TEST_SIZE,is_train_set=False)
test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')
saver = tf.train.Saver(max_to_keep=100)
last_epoch = load_model(sess, saver,FLAGS.saveModelPath,train_model)
print ('start: ',last_epoch + 1)
test_accury_1,test_accury_5,test_loss = run_epoch(sess,test_config.keep_prob, fout,test_config.batch_size, train_model, data_test, tf.no_op(),2,test_writer,istraining=False)
info = "Final: Test accury(top 1): %.4f Test accury(top 5): %.4f Loss %.4f" % (test_accury_1,test_accury_5,test_loss)
print (info)
fout.write(info + '\n')
fout.flush()
test_writer.close()
print("Training step is compeleted!")
fout.close()
评论列表
文章目录