def get_dataset(dataset_name, dataset_dir, image_count, class_count, split_name):
slim = tf.contrib.slim
items_to_descriptions = {'image': 'A color image.',
'label': 'An integer in range(0, class_count)'}
file_pattern = os.path.join(dataset_dir, '{}_{}_*.tfrecord'.format(dataset_name, split_name))
reader = tf.TFRecordReader
keys_to_features = {'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
'image/format': tf.FixedLenFeature((), tf.string, default_value='png'),
'image/class/label': tf.FixedLenFeature([], tf.int64,
default_value=tf.zeros([], dtype=tf.int64))}
items_to_handlers = {'image': slim.tfexample_decoder.Image(),
'label': slim.tfexample_decoder.Tensor('image/class/label')}
decoder = slim.tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers)
labels_to_names = read_label_file(dataset_dir)
return(slim.dataset.Dataset(data_sources=file_pattern,
reader=reader,
decoder=decoder,
num_samples=image_count,
items_to_descriptions=items_to_descriptions,
num_classes=class_count,
labels_to_names=labels_to_names,
shuffle=True))
retrain.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录