def _init_embeddings(self):
with tf.variable_scope("embedding") as scope:
sqrt3 = math.sqrt(3)
initializer = tf.random_uniform_initializer(-sqrt3, sqrt3)
self.encoder_embedding_matrix = tf.get_variable(
name="encoder_embedding_matrix",
shape=[self.encoder_vocab_size, self.embedding_size],
initializer=initializer,
dtype=tf.float32)
self.decoder_embedding_matrix = tf.get_variable(
name="decoder_embedding_matrix",
shape=[self.decoder_vocab_size, self.embedding_size],
initializer=initializer,
dtype=tf.float32)
# encoder?embedd
self.encoder_inputs_embedded = tf.nn.embedding_lookup(
self.encoder_embedding_matrix, self.encoder_inputs)
# decoder?embedd
self.decoder_train_inputs_embedded = tf.nn.embedding_lookup(
self.decoder_embedding_matrix, self.decoder_train_inputs)
dynamic_seq2seq_model.py 文件源码
python
阅读 36
收藏 0
点赞 0
评论 0
评论列表
文章目录