def construct_model(config, eval_config, raw_data, opt_method):
train_data, valid_data, test_data, _ = raw_data
eval_config.batch_size = 1
eval_config.num_steps = 1
initializer = tf.random_uniform_initializer(-config.init_scale, config.init_scale)
with tf.name_scope("Train"):
train_input = PTBInput(config=config, data=train_data, name="TrainInput")
with tf.variable_scope("Model", reuse=None, initializer=initializer):
m = PTBModel(is_training=True, config=config, input_=train_input, opt_method=opt_method)
with tf.name_scope("Valid"):
valid_input = PTBInput(config=config, data=valid_data, name="ValidInput")
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mvalid = PTBModel(is_training=False, config=config, input_=valid_input, opt_method=opt_method)
with tf.name_scope("Test"):
test_input = PTBInput(config=eval_config, data=test_data, name="TestInput")
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mtest = PTBModel(is_training=False, config=eval_config, input_=test_input, opt_method=opt_method)
return m, mvalid, mtest
评论列表
文章目录