def encode(self, inputs, sequence_length, **kwargs):
scope = tf.get_variable_scope()
scope.set_initializer(tf.random_uniform_initializer(
-self.params["init_scale"],
self.params["init_scale"]))
cell = training_utils.get_rnn_cell(**self.params["rnn_cell"])
outputs, state = tf.nn.dynamic_rnn(
cell=cell,
inputs=inputs,
sequence_length=sequence_length,
dtype=tf.float32,
**kwargs)
return EncoderOutput(
outputs=outputs,
final_state=state,
attention_values=outputs,
attention_values_length=sequence_length)
评论列表
文章目录