inception_v2.py 文件源码

python
阅读 25 收藏 0 点赞 0 评论 0

项目:tf_classification 作者: visipedia 项目源码 文件源码
def _reduced_kernel_size_for_small_input(input_tensor, kernel_size):
  """Define kernel size which is automatically reduced for small input.

  If the shape of the input images is unknown at graph construction time this
  function assumes that the input images are is large enough.

  Args:
    input_tensor: input tensor of size [batch_size, height, width, channels].
    kernel_size: desired kernel size of length 2: [kernel_height, kernel_width]

  Returns:
    a tensor with the kernel size.

  TODO(jrru): Make this function work with unknown shapes. Theoretically, this
  can be done with the code below. Problems are two-fold: (1) If the shape was
  known, it will be lost. (2) inception.slim.ops._two_element_tuple cannot
  handle tensors that define the kernel size.
      shape = tf.shape(input_tensor)
      return = tf.pack([tf.minimum(shape[1], kernel_size[0]),
                        tf.minimum(shape[2], kernel_size[1])])

  """
  shape = input_tensor.get_shape().as_list()
  if shape[1] is None or shape[2] is None:
    kernel_size_out = kernel_size
  else:
    kernel_size_out = [min(shape[1], kernel_size[0]),
                       min(shape[2], kernel_size[1])]
  return kernel_size_out
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号