def generate_mask(img_mask_list, h, w, l):
img_masks, loss_masks = [], []
for i in range(l):
# generate image mask
img_mask = img_mask_list[i]
img_mask = tf.cast(tf.image.decode_png(img_mask), tf.float32)
img_mask = tf.reshape(img_mask, (h, w))
img_masks.append(img_mask)
# generate loss mask
s_total = h * w
s_mask = tf.reduce_sum(img_mask)
def f1(): return img_mask*((s_total-s_mask)/s_mask-1)+1
def f2(): return tf.zeros_like(img_mask)
def f3(): return tf.ones_like(img_mask)
loss_mask = tf.case([(tf.equal(s_mask, 0), f2), \
(tf.less(s_mask, s_total/2), f1)],
default=f3)
loss_masks.append(loss_mask)
return tf.stack(img_masks), tf.stack(loss_masks)
评论列表
文章目录