def build(self, session, predict=True, projection=True):
for j, bucket in enumerate(self.buckets):
with vs.variable_scope(vs.get_variable_scope(), reuse=True if j > 0 else None):
o, d_s, e_s = self.model.forward(
self.encoder_inputs[:bucket[0]], self.decoder_inputs[:bucket[1]], predict=predict, projection=projection
)
self._outputs.append(o)
self._encoder_state.append(e_s)
self._decoder_state.append(d_s)
self.saver = tf.train.Saver(tf.all_variables())
session.run(tf.initialize_all_variables())
if self.model_path:
saved = tf.train.get_checkpoint_state(self.model_path)
if saved and tf.gfile.Exists(saved.model_checkpoint_path):
self.saver.restore(session, saved.model_checkpoint_path)
self._graph_builded = True
model.py 文件源码
python
阅读 112
收藏 0
点赞 0
评论 0
评论列表
文章目录