cifar10_eval.py 文件源码

python
阅读 27 收藏 0 点赞 0 评论 0

项目:facial-emotion-detection-dl 作者: dllatas 项目源码 文件源码
def evaluate():
  """Eval CIFAR-10 for a number of steps."""
  with tf.Graph().as_default():
    # Get images and labels for CIFAR-10.
    eval_data = FLAGS.eval_data == 'test'
    images, labels = cifar10.inputs(eval_data=eval_data)
    # images, labels = cifar10.distorted_inputs()

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = cifar10.inference(images, eval=True)

    # Calculate predictions.
    top_k_op = tf.nn.in_top_k(logits, labels, 3)

    # Restore the moving average version of the learned variables for eval.
    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.merge_all_summaries()

    graph_def = tf.get_default_graph().as_graph_def()
    summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir,
                                            graph_def=graph_def)

    while True:
      eval_once(saver, summary_writer, top_k_op, summary_op)
      if FLAGS.run_once:
        break
      time.sleep(FLAGS.eval_interval_secs)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号