def _define_loss(self):
"""Define loss function that will be used to optimize model params"""
# define generator loss
with tf.variable_scope('generator'):
self.loss_gen = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(
logits=self.disc_gen,
labels=tf.ones_like(self.disc_gen)))
# define discriminator loss
with tf.variable_scope('discriminator'):
self.loss_disc = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(
logits=self.disc_real,
labels=tf.ones_like(self.disc_real)) +
tf.nn.sigmoid_cross_entropy_with_logits(
logits=self.disc_gen,
labels=tf.zeros_like(self.disc_gen)))
# save summaries of losses
tf.summary.scalar('loss_gen', self.loss_gen)
tf.summary.scalar('loss_disc', self.loss_disc)
评论列表
文章目录