def main(_):
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
# GOLANG note that we must label the input-tensor!
x = tf.placeholder(tf.float32, [None, 784], name="imageinput")
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.add(tf.matmul(x, W) , b)
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# Train
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
# GOLANG note that we must label the infer-operation!!
infer = tf.argmax(y,1, name="infer")
correct_prediction = tf.equal(infer, tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images,
y_: mnist.test.labels}))
builder = tf.saved_model.builder.SavedModelBuilder("mnistmodel")
# GOLANG note that we must tag our model so that we can retrieve it at inference-time
builder.add_meta_graph_and_variables(sess,["serve"])
builder.save()
评论列表
文章目录