def svr(X, Y):
"""Support vector regressor, kind of..."""
lambda_ = 1e-4
eps = 0.01
lenscale = 1.
# Specify which kernel to approximate with the random Fourier features
kern = ab.RBF(lenscale=lenscale)
net = (
# ab.InputLayer(name="X", n_samples=n_samples_) >>
ab.InputLayer(name="X", n_samples=1) >>
ab.RandomFourier(n_features=50, kernel=kern) >>
# ab.DropOut(keep_prob=0.9) >>
ab.DenseMAP(output_dim=1, l2_reg=lambda_, l1_reg=0.)
)
f, reg = net(X=X)
loss = tf.reduce_mean(tf.nn.relu(tf.abs(Y - f) - eps)) + reg
return f, loss
评论列表
文章目录