def __init__(self, num_units, input_size=None, activation=tf.tanh,
inner_activation=tf.sigmoid, bias=True, weights_init=None,
trainable=True, restore=True, reuse=False):
if input_size is not None:
logging.warn("%s: The input_size parameter is deprecated." % self)
self._num_units = num_units
if isinstance(activation, str):
self._activation = activations.get(activation)
elif hasattr(activation, '__call__'):
self._activation = activation
else:
raise ValueError("Invalid Activation.")
if isinstance(inner_activation, str):
self._inner_activation = activations.get(inner_activation)
elif hasattr(inner_activation, '__call__'):
self._inner_activation = inner_activation
else:
raise ValueError("Invalid Activation.")
self.bias = bias
self.weights_init = weights_init
if isinstance(weights_init, str):
self.weights_init = initializations.get(weights_init)()
self.trainable = trainable
self.restore = restore
self.reuse = reuse
评论列表
文章目录