policy_network.py 文件源码

python
阅读 25 收藏 0 点赞 0 评论 0

项目:gail-driver 作者: sisl 项目源码 文件源码
def _create_optimizer(self, args):
        # Find negagtive log-likelihood of true actions
        std_a = tf.exp(self.a_logstd)
        pl_1 = 0.5 * tf.to_float(args.action_dim) * np.log(2. * np.pi)
        pl_2 = tf.to_float(args.action_dim) * tf.reduce_sum(tf.log(std_a))
        pl_3 = 0.5 * \
            tf.reduce_mean(tf.reduce_sum(
                tf.square((self.targets - self.a_mean) / std_a), 1))
        policy_loss = pl_1 + pl_2 + pl_3

        # Find overall loss
        self.cost = policy_loss
        self.summary_policy = tf.scalar_summary(
            "Policy loss", tf.reduce_mean(policy_loss))

        # Perform parameter update
        tvars = tf.trainable_variables()
        grads, _ = tf.clip_by_global_norm(
            tf.gradients(self.cost, tvars), args.grad_clip)
        optimizer = tf.train.AdamOptimizer(self.learning_rate)
        self.train = optimizer.apply_gradients(zip(grads, tvars))
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号