def _check_all_methods():
for _mode in HO_MODES[:]:
for _model in IMPLEMENTED_MODEL_TYPES:
# _model_kwargs = {'dims': [None, 300, 300, None]}
tf.reset_default_graph()
# set random seeds!!!!
np.random.seed(1)
tf.set_random_seed(1)
experiment('test_with_model_' + _model, collect_data=False, hyper_iterations=3, mode=_mode,
# epochs=3,
model=_model,
# model_kwargs=_model_kwargs,
set_T=100,
synthetic_hypers=None,
hyper_batch_size=100
# optimizer=rf.GradientDescentOptimizer,
# optimizer_kwargs={'lr': tf.Variable(.01, name='eta')}
)
评论列表
文章目录