def _check_forward():
w_100 = []
for i in range(1):
for _mode in HO_MODES[0:1]:
for _model in IMPLEMENTED_MODEL_TYPES[0:2]:
_model_kwargs = {} # {'dims': [None, 300, 300, None]}
tf.reset_default_graph()
# set random seeds!!!!
np.random.seed(1)
tf.set_random_seed(1)
results = experiment('test_with_model_' + _model, collect_data=False, hyper_iterations=10, mode=_mode,
epochs=None,
model=_model,
model_kwargs=_model_kwargs,
set_T=1000,
synthetic_hypers=None,
hyper_batch_size=100
# optimizer=rf.GradientDescentOptimizer,
# optimizer_kwargs={'lr': tf.Variable(.01, name='eta')}
)
w_100.append(results[0]['weights'])
# rf.save_obj(w_100, 'check_forward')
return w_100
评论列表
文章目录