def __init__(self, name = None, num_of_persons = 0, recurrent_unit = 'GRU', rnn_layers = 1,
reuse = False, is_training = False, input_net = None):
tf.set_random_seed(SEED)
if num_of_persons <= 0 and is_training:
raise Exception('Parameter num_of_persons has to be greater than zero when thaining')
self.num_of_persons = num_of_persons
self.rnn_layers = rnn_layers
self.recurrent_unit = recurrent_unit
if input_net is None:
input_tensor = tf.placeholder(
dtype = tf.float32,
shape = (None, 17, 17, 32),
name = 'input_image')
else:
input_tensor = input_net
super().__init__(name, input_tensor, self.FEATURES, num_of_persons, reuse, is_training)
评论列表
文章目录