def _print_info(self, data_set, verbose):
logger.info('Config:')
logger.info(pprint.pformat(self.cnf))
data_set.print_info()
logger.info('Max epochs: %d' % self.num_epochs)
if verbose > 0:
util.show_vars(logger, self.trainable_scopes)
# logger.debug("\n---Number of Regularizable vars in model:")
# logger.debug(len(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)))
if verbose > 3:
all_ops = tf.get_default_graph().get_operations()
logger.debug("\n---All ops in graph")
names = map(lambda v: v.name, all_ops)
for n in sorted(names):
logger.debug(n)
util.show_layer_shapes(self.training_end_points, logger)
评论列表
文章目录