def init_segmenter(args_segmenter_model):
global segmenter_model, rings, sectors, points_per_ring, is_ped, tf_segmenter_graph
segmenter_model = load_model(args_segmenter_model, compile=False)
segmenter_model._make_predict_function() # https://github.com/fchollet/keras/issues/6124
print("Loading segmenter model " + args_segmenter_model)
segmenter_model.summary()
points_per_ring = segmenter_model.get_input_shape_at(0)[0][1]
match = re.search(r'lidarnet-(car|ped)-.*seg-rings_(\d+)_(\d+)-sectors_(\d+)-.*\.hdf5', args_segmenter_model)
is_ped = match.group(1) == 'ped'
rings = range(int(match.group(2)), int(match.group(3)))
sectors = int(match.group(4))
points_per_ring *= sectors
assert len(rings) == segmenter_model.get_input_shape_at(0)[0][2]
print('Loaded segmenter model with ' + str(points_per_ring) + ' points per ring and ' + str(len(rings)) +
' rings from ' + str(rings[0]) + ' to ' + str(rings[-1]) )
if K._backend == 'tensorflow':
tf_segmenter_graph = tf.get_default_graph()
print(tf_segmenter_graph)
return
评论列表
文章目录