model_cifar.py 文件源码

python
阅读 25 收藏 0 点赞 0 评论 0

项目:deep_separation_contraction 作者: edouardoyallon 项目源码 文件源码
def loss(logits, labels,n_class, scope='loss'):
  with tf.variable_scope(scope):
    # entropy loss
    targets = one_hot_embedding(labels, n_class)
    entropy_loss = tf.reduce_mean(
      tf.nn.softmax_cross_entropy_with_logits(logits, targets),
      name='entropy_loss')
    tf.add_to_collection('losses', entropy_loss)
    # weight l2 decay loss
    weight_l2_losses = [tf.nn.l2_loss(o) for o in tf.get_collection('weights')]
    weight_decay_loss = tf.mul(FLAGS.weight_decay, tf.add_n(weight_l2_losses),
      name='weight_decay_loss')
    tf.add_to_collection('losses', weight_decay_loss)
  for var in tf.get_collection('losses'):
    tf.scalar_summary('losses/' + var.op.name, var)
  # total loss
  return tf.add_n(tf.get_collection('losses'), name='total_loss')
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号