def _init_loss(cls, config, q, expected_q, actions, reg_loss=None,
summaries=None):
"""
Setup the loss function and apply regularization is provided.
@return: loss_op
"""
q_masked = tf.reduce_sum(tf.mul(q, actions), reduction_indices=[1])
loss = tf.reduce_mean(tf.squared_difference(q_masked, expected_q))
if reg_loss is not None:
loss += config.reg_param * reg_loss
if summaries is not None:
summaries.append(tf.scalar_summary('loss', loss))
return loss
评论列表
文章目录