def __init__(self, conf, gpu_id, start_images, actions, start_states, pix_distrib1,pix_distrib2):
nsmp_per_gpu = conf['batch_size']/ conf['ngpu']
# picking different subset of the actions for each gpu
startidx = gpu_id * nsmp_per_gpu
actions = tf.slice(actions, [startidx, 0, 0], [nsmp_per_gpu, -1, -1])
start_images = tf.slice(start_images, [startidx, 0, 0, 0, 0], [nsmp_per_gpu, -1, -1, -1, -1])
start_states = tf.slice(start_states, [startidx, 0, 0], [nsmp_per_gpu, -1, -1])
pix_distrib1 = tf.slice(pix_distrib1, [startidx, 0, 0, 0, 0], [nsmp_per_gpu, -1, -1, -1, -1])
pix_distrib2 = tf.slice(pix_distrib2, [startidx, 0, 0, 0, 0], [nsmp_per_gpu, -1, -1, -1, -1])
print 'startindex for gpu {0}: {1}'.format(gpu_id, startidx)
from prediction_train_sawyer import Model
if 'ndesig' in conf:
self.model = Model(conf, start_images, actions, start_states, pix_distrib=pix_distrib1,pix_distrib2=pix_distrib2, inference=True)
# self.model = Model(conf, start_images, actions, start_states, pix_distrib=pix_distrib1,
# pix_distrib2=pix_distrib2,
# reuse_scope=reuse_scope)
else:
# self.model = Model(conf,start_images,actions,start_states, pix_distrib=pix_distrib1, reuse_scope= reuse_scope)
self.model = Model(conf, start_images, actions, start_states, pix_distrib=pix_distrib1, inference=True)
评论列表
文章目录