def create_dis_model(self):
# Set up discriminator model parameters
self.get_dis_params()
# Set up discriminator graph inputs
self.person_board_1 = tf.placeholder(tf.float32, [None, self.n_input])
self.person_board_2 = tf.placeholder(tf.float32, [None, self.n_input])
self.gen_board = tf.placeholder(tf.float32, [None, self.n_input])
# Get discriminator outputs
self.d_pred_real = self.d_predict(tf.concat(1, [self.person_board_1, self.person_board_2]), self.p_keep)
self.d_pred_fake = self.d_predict(tf.concat(1, [self.person_board_1, self.gen_board]), self.p_keep)
# Clamp weights
self.weight_clamps = [tf.clip_by_value(self.d_weights[layer], -0.01, 0.01) for layer in self.d_weights]
self.bias_clamps = [tf.clip_by_value(self.d_biases[layer], -0.01, 0.01) for layer in self.d_biases]
评论列表
文章目录