model.py 文件源码

python
阅读 35 收藏 0 点赞 0 评论 0

项目:tensorflow-action-conditional-video-prediction 作者: williamd4112 项目源码 文件源码
def _create_optimizer(self):
        lr = self.optimizer_args['lr'] if self.optimizer_args else 1e-4
        with tf.variable_scope('optimize', reuse=not self.is_train) as scope:
            # Setup global_step, optimizer
            self.global_step = tf.get_variable('global_step', shape=(), initializer=tf.constant_initializer(0.0), trainable=False)

            self.learning_rate = tf.train.exponential_decay(lr, self.global_step, 1e5, 0.9, staircase=True)
            self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate, name='optimizer')

            # According to original paper code, learning rate of bias is 2x of base learning rate
            grads_vars = self.optimizer.compute_gradients(self.loss)
            bias_pattern = re.compile('.*/b')
            grads_vars_mult = []
            for grad, var in grads_vars:
                if bias_pattern.match(var.op.name):
                    grads_vars_mult.append((grad * 2.0, var))
                else: 
                    grads_vars_mult.append((grad, var))

            # According to original paper, gradient should be clipped with [-0.1, 0.1]
            grads_clip = [(tf.clip_by_value(grad, -0.1, 0.1), var) for grad, var in grads_vars_mult]
            self.train = self.optimizer.apply_gradients(grads_clip, global_step=self.global_step)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号