def buildmodel(X, paras):
hconv1 = convlayer(X, paras['wconv1'], paras['bconv1'], flag='maxpool')
hconv2 = convlayer(hconv1, paras['wconv2'], paras['bconv2'], flag='maxpool')
hconv3 = tf.nn.conv2d(hconv2, paras['wconv3'], strides=[1,1,1,1], padding='VALID')
hconv3bias = tf.nn.bias_add(hconv3, paras['bconv3'])
hconv3tan = tf.nn.tanh(hconv3bias)
hconv4 = tf.nn.conv2d_transpose(hconv3tan, paras['wconv4'], [batchsize,boxheight,boxwidth,2],
strides=[1,1,1,1], padding='VALID')
hconv4 = tf.reshape(hconv4, [-1,boxheight*boxwidth*2])
hconv4bias = tf.nn.bias_add(hconv4, paras['bconv4'])
hconv4bias = tf.reshape(hconv4bias, [-1, boxheight, boxwidth, 2])
hconv4bias = tf.reshape(hconv4bias, [-1,2])
hconv4soft = tf.nn.softmax(hconv4bias)
hconv4clip = tf.clip_by_value(hconv4soft, 1e-6, 1.)
hconv4clip = (tf.reshape(hconv4clip, [-1, boxheight, boxwidth, 2]))
return hconv4clip
utils_combine.py 文件源码
python
阅读 33
收藏 0
点赞 0
评论 0
评论列表
文章目录