def preprocess_for_eval(image, output_height, output_width, resize_side, # YY: ):
sub_mean_pixel=True, use_per_img_std=False,
use_aspect_pres_resize=True):
"""Preprocesses the given image for evaluation.
Args:
image: A `Tensor` representing an image of arbitrary size.
output_height: The height of the image after preprocessing.
output_width: The width of the image after preprocessing.
resize_side: The smallest side of the image for aspect-preserving resizing.
Returns:
A preprocessed image.
"""
if use_aspect_pres_resize:
image = _aspect_preserving_resize(image, resize_side)
else:
image = _square_resize(image, resize_side)
image = _central_crop([image], output_height, output_width)[0]
image.set_shape([output_height, output_width, 3])
image = tf.to_float(image)
return process_image_crop(image, sub_mean_pixel, use_per_img_std)
y_preprocessing.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录