def last_conv(input, reuse=False, use_sigmoid=False, name=None):
""" Last convolutional layer of discriminator network
(1 filter with size 4x4, stride 1)
Args:
input: 4D tensor
reuse: boolean
use_sigmoid: boolean (False if use lsgan)
name: string, e.g. 'C64'
"""
with tf.variable_scope(name, reuse=reuse):
weights = _weights("weights",
shape=[4, 4, input.get_shape()[3], 1])
biases = _biases("biases", [1])
conv = tf.nn.conv2d(input, weights,
strides=[1, 1, 1, 1], padding='SAME')
output = conv + biases
if use_sigmoid:
output = tf.sigmoid(output)
return output
### Helpers
评论列表
文章目录