def mce_loss(positive_scores, negative_scores):
"""
Minimum Classification Error (MCE) loss [1]:
loss(p, n) = \sum_i \sigma(- p_i + n_i)
[1] http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf
Args:
positive_scores: (N,) Tensor containing scores of positive examples.
negative_scores: (N,) Tensor containing scores of negative examples.
Returns:
Loss value.
"""
mce_losses = tf.sigmoid(- positive_scores + negative_scores)
loss = tf.reduce_sum(mce_losses)
return loss
评论列表
文章目录