def __init__(self, inputs, outputs, updates=[]):
if not isinstance(inputs, (list, tuple)):
raise TypeError('`inputs` to a TensorFlow backend function '
'should be a list or tuple.')
if not isinstance(outputs, (list, tuple)):
raise TypeError('`outputs` of a TensorFlow backend function '
'should be a list or tuple.')
if not isinstance(updates, (list, tuple)):
raise TypeError('`updates` in a TensorFlow backend function '
'should be a list or tuple.')
self.inputs = list(inputs)
self.outputs = list(outputs)
with tf.control_dependencies(self.outputs):
updates_ops = []
for update in updates:
if isinstance(update, tuple):
p, new_p = update
updates_ops.append(tf.assign(p, new_p))
else:
# assumed already an op
updates_ops.append(update)
self.updates_op = tf.group(*updates_ops)
tensorflow_backend.py 文件源码
python
阅读 31
收藏 0
点赞 0
评论 0
评论列表
文章目录