def predict_sym(self, xs):
return L.get_output(self.l_out, xs)
# def fit(self, xs, ys):
# if self._normalize_inputs:
# # recompute normalizing constants for inputs
# new_mean = np.mean(xs, axis=0, keepdims=True)
# new_std = np.std(xs, axis=0, keepdims=True) + 1e-8
# tf.get_default_session().run(tf.group(
# tf.assign(self._x_mean_var, new_mean),
# tf.assign(self._x_std_var, new_std),
# ))
# inputs = [xs, ys]
# loss_before = self._optimizer.loss(inputs)
# if self._name:
# prefix = self._name + "_"
# else:
# prefix = ""
# logger.record_tabular(prefix + 'LossBefore', loss_before)
# self._optimizer.optimize(inputs)
# loss_after = self._optimizer.loss(inputs)
# logger.record_tabular(prefix + 'LossAfter', loss_after)
# logger.record_tabular(prefix + 'dLoss', loss_before - loss_after)
deterministic_mlp_regressor.py 文件源码
python
阅读 32
收藏 0
点赞 0
评论 0
评论列表
文章目录