def build_train_op(self):
config=self.config
self.g_optim = tf.train.AdamOptimizer(config.learning_rate, beta1=config.beta1) \
.minimize(self.g_loss, var_list=self.g_vars)
self.d_optim = tf.train.AdamOptimizer(config.learning_rate, beta1=config.beta1) \
.minimize(self.d_loss, var_list=self.d_vars)
self.d_label_optim = tf.train.AdamOptimizer(config.learning_rate, beta1=config.beta1) \
.minimize(self.d_labelLossReal, var_list=self.dl_vars)
self.d_gen_label_optim = tf.train.AdamOptimizer(config.learning_rate, beta1=config.beta1) \
.minimize(self.g_lossLabels_GLabeler, var_list=self.dl_gen_vars)
self.d_on_z_optim = tf.train.AdamOptimizer(config.learning_rate, beta1=config.beta1) \
.minimize(self.g_loss_on_z + self.rec_loss_coeff*self.real_reconstruction_loss, var_list=self.dz_vars)
self.k_t_update = tf.assign(self.k_t, self.k_t*tf.exp(-1.0/config.tau) )
self.train_op=tf.group(self.d_gen_label_optim,self.d_label_optim,self.d_optim,self.g_optim,self.d_on_z_optim)
评论列表
文章目录