def sample_encoded_context(embeddings, model, bAugmentation=True):
'''Helper function for init_opt'''
# Build conditioning augmentation structure for text embedding
# under different variable_scope: 'g_net' and 'hr_g_net'
c_mean_logsigma = model.generate_condition(embeddings)
mean = c_mean_logsigma[0]
if bAugmentation:
# epsilon = tf.random_normal(tf.shape(mean))
epsilon = tf.truncated_normal(tf.shape(mean))
stddev = tf.exp(c_mean_logsigma[1])
c = mean + stddev * epsilon
else:
c = mean
return c
birds_skip_thought_demo.py 文件源码
python
阅读 34
收藏 0
点赞 0
评论 0
评论列表
文章目录