def batch_norm_wrapper(inputs, is_training, decay = 0.999):
scale = tf.Variable(tf.ones([inputs.get_shape()[-1]]))
beta = tf.Variable(tf.zeros([inputs.get_shape()[-1]]))
pop_mean = tf.Variable(tf.zeros([inputs.get_shape()[-1]]), trainable=False)
pop_var = tf.Variable(tf.ones([inputs.get_shape()[-1]]), trainable=False)
if is_training is not None:
batch_mean, batch_var = tf.nn.moments(inputs,[0])
train_mean = tf.assign(pop_mean,
pop_mean * decay + batch_mean * (1 - decay))
train_var = tf.assign(pop_var,
pop_var * decay + batch_var * (1 - decay))
with tf.control_dependencies([train_mean, train_var]):
return tf.nn.batch_normalization(inputs,
train_mean, train_var, beta, scale, epsilon)
else:
return tf.nn.batch_normalization(inputs,
pop_mean, pop_var, beta, scale, epsilon)
## regularization parameter
评论列表
文章目录