def grad_variance(self):
grad_var_ops = []
tensor_to_avg = []
for t, g in zip(self._tvars, self._grads):
if isinstance(g, ops.IndexedSlices):
tensor_to_avg.append(
tf.reshape(tf.unsorted_segment_sum(
g.values, g.indices, g.dense_shape[0]),
shape=t.get_shape()))
else:
tensor_to_avg.append(g)
avg_op = self._moving_averager.apply(tensor_to_avg)
grad_var_ops.append(avg_op)
with tf.control_dependencies([avg_op]):
self._grad_avg = [
self._moving_averager.average(val) for val in tensor_to_avg]
self._grad_avg_squared = [tf.square(val) for val in self._grad_avg]
self._grad_var = tf.maximum(
tf.constant(EPS, dtype=self._grad_norm_squared_avg.dtype),
self._grad_norm_squared_avg
- tf.add_n([tf.reduce_sum(val) for val in self._grad_avg_squared] ) )
if self._sparsity_debias:
self._grad_var *= self._sparsity_avg
return grad_var_ops
评论列表
文章目录