model.py 文件源码

python
阅读 42 收藏 0 点赞 0 评论 0

项目:web_page_classification 作者: yuhui-lin 项目源码 文件源码
def loss(logits, labels):
    """Add L2Loss to all the trainable variables.
    Add summary for "Loss" and "Loss/avg".
    Args:
        logits: Logits from inference().
        labels: Labels from distorted_inputs or inputs(). 1-D tensor
                of shape [batch_size]
    Returns:
        Loss tensor of type float.
    """
    # Calculate the average cross entropy loss across the batch.
    labels = tf.cast(labels, tf.int64)
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits,
        labels,
        name='cross_entropy_per_example')
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    tf.add_to_collection('losses', cross_entropy_mean)

    # The total loss is defined as the cross entropy loss plus all of the weight
    # decay terms (L2 loss).
    return tf.add_n(tf.get_collection('losses'), name='total_loss')
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号