def pre_process_data(image,training):
if training:
image = tf.random_crop(image,size=[img_size_cropped,img_size_cropped,cifar10.num_channels])
image = tf.image.flip_left_right(image)
image = tf.image.random_hue(image)
image = tf.image.random_contrast(image)
image = tf.image.random_saturation(image)
image = tf.image.random_brightness(image)
image = tf.maximum(image,1.0)
image = tf.minimum(image,0.0)
else:
#for testing image
image = tf.image.resize_image_with_crop_or_pad(image,img_size_cropped,img_size_cropped);
return image
评论列表
文章目录