def _summarize_progress(train_data, feature, label, gene_output, batch, suffix, max_samples=8):
td = train_data
size = [label.shape[1], label.shape[2]]
nearest = tf.image.resize_nearest_neighbor(feature, size)
nearest = tf.maximum(tf.minimum(nearest, 1.0), 0.0)
bicubic = tf.image.resize_bicubic(feature, size)
bicubic = tf.maximum(tf.minimum(bicubic, 1.0), 0.0)
clipped = tf.maximum(tf.minimum(gene_output, 1.0), 0.0)
# image = tf.concat([nearest, bicubic, clipped, label], 2)
image = clipped
printCnt = 5
image = image[0:printCnt]
image = tf.concat([image[i,:,:,:] for i in range(printCnt)], 0)
image = td.sess.run(image)
filename = 'batch%06d_%s.png' % (batch, suffix)
filename = os.path.join(FLAGS.train_dir, filename)
scipy.misc.toimage(image, cmin=0., cmax=1.).save(filename)
print(" Saved %s" % (filename,))
评论列表
文章目录