def conv(x, c):
ksize = c['ksize']
stride = c['stride']
filters_out = c['conv_filters_out']
filters_in = x.get_shape()[-1]
shape = [ksize, ksize, filters_in, filters_out]
# initializer = tf.truncated_normal_initializer(stddev=CONV_WEIGHT_STDDEV)
initializer = tf.contrib.layers.xavier_initializer()
weights = _get_variable('weights',
shape=shape,
#dtype='float',
initializer=initializer,
weight_decay=CONV_WEIGHT_DECAY)
bias = tf.get_variable('bias', [filters_out], 'float', tf.constant_initializer(0.05, dtype='float'))
x = tf.nn.conv2d(x, weights, [1, stride, stride, 1], padding='SAME')
return tf.nn.bias_add(x, bias)
评论列表
文章目录