yellowfin.py 文件源码

python
阅读 32 收藏 0 点赞 0 评论 0

项目:YellowFin 作者: JianGoForIt 项目源码 文件源码
def dist_to_opt(self):
    dist_to_opt_ops = []
    # running average of the norm of gradeint
    self._grad_norm = tf.sqrt(self._grad_norm_squared)
    avg_op = self._moving_averager.apply([self._grad_norm, ])
    dist_to_opt_ops.append(avg_op)
    with tf.control_dependencies([avg_op]):
      self._grad_norm_avg = self._moving_averager.average(
        self._grad_norm)
      # single iteration distance estimation
      # note that self._grad_norm_avg is per variable
      self._dist_to_opt = (self._grad_norm_avg
                 / (self._grad_norm_squared_avg + EPS) )
    # running average of distance
    avg_op = self._moving_averager.apply([self._dist_to_opt])
    dist_to_opt_ops.append(avg_op)
    with tf.control_dependencies([avg_op]):
      self._dist_to_opt_avg = tf.identity(
        self._moving_averager.average(self._dist_to_opt))
      if self._sparsity_debias:
        self._dist_to_opt_avg /= (tf.sqrt(self._sparsity_avg) + EPS)
    return dist_to_opt_ops
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号