def batch_norm(self, X):
train_phase = self.train_phase
with tf.name_scope('bn'):
n_out = X.get_shape()[-1:]
beta = tf.Variable(tf.constant(0.0, shape=n_out), name='beta', trainable=True)
gamma = tf.Variable(tf.constant(1.0, shape=n_out), name='gamma', trainable=True)
# batch_mean, batch_var = tf.nn.moments(X, [0, 1, 2], name='moments')
batch_mean, batch_var = tf.nn.moments(X, [0, 1, 2], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=0.5)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(train_phase, mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_normalization(X, mean, var, beta, gamma, 1e-3)
return normed
评论列表
文章目录