def check_video_id():
tf.set_random_seed(0) # for reproducibility
with tf.Graph().as_default():
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
# prepare a reader for each single model prediction result
all_readers = []
all_patterns = FLAGS.eval_data_patterns
all_patterns = map(lambda x: x.strip(), all_patterns.strip().strip(",").split(","))
for i in xrange(len(all_patterns)):
reader = readers.EnsembleReader(
feature_names=feature_names, feature_sizes=feature_sizes)
all_readers.append(reader)
input_reader = None
input_data_pattern = None
if FLAGS.input_data_pattern is not None:
input_reader = readers.EnsembleReader(
feature_names=["mean_rgb","mean_audio"], feature_sizes=[1024,128])
input_data_pattern = FLAGS.input_data_pattern
if FLAGS.eval_data_patterns is "":
raise IOError("'eval_data_patterns' was not specified. " +
"Nothing to evaluate.")
build_graph(
all_readers=all_readers,
input_reader=input_reader,
input_data_pattern=input_data_pattern,
all_eval_data_patterns=all_patterns,
batch_size=FLAGS.batch_size)
logging.info("built evaluation graph")
video_id_equal = tf.get_collection("video_id_equal")[0]
input_distance = tf.get_collection("input_distance")[0]
check_loop(video_id_equal, input_distance, all_patterns)
评论列表
文章目录